Integration by Reduction Formulae

Evaluation of sine Function

Author

Abhirup Moitra

Published

June 19, 2023

Reduction Formula

A reduction formula is often used in integration for working out integrals of higher order. It is lengthy and tedious to work across higher-degree expressions, and here the reduction formulas are given as simple expressions with a degree n, to solve these higher-degree expressions. These reduction formulas have been derived from the base formulas of integration and work with the same rules of integration.

Integration by Reduction Formula

Integration by reduction formula is a method relying on recurrence relations. It is used when an expression containing an integer parameter, usually in the form of powers of elementary functions, or products of transcendental functions and polynomials of arbitrary degree, can’t be integrated directly. But using other methods of integration a reduction formula can be set up to obtain the integral of the same or similar expression with a lower integer parameter, progressively simplifying the integral until it can be evaluated. [1] This method of integration is one of the earliest used.

A reduction formula expresses an integral In that depends on some integer n in terms of another integral Im that involves a smaller integer m. If one repeatedly applies this formula, one may then express In in terms of a much simpler integral.

We use integration by parts to establish the reduction formula.

Evaluation of sine Function

Indefinite

In=sinmxdx=sinm1x sinxdx

=sinm1xsinx dx +(m1)cosxsinm1xcosxdx

=sinm1x cosx +(m1)sinm2 (1sin2x)dx

=sinm1x cosx +(m1)sinm2x dx (m1)sinmx dx

=sinm1x cosx +(m1)sinm2x dx (m1)In

In=sinm1xcosxm+m1msinm2x dx

sinmx dx=sinm1xcosxm+m1msinm2x dx

Definite

Now,0π2sinx dx=[sinm1xcosxm]0π2+m1msinm2x dx

Ifm2,sinm1xcosx=0

0π2sinmx dx=m1m0π2sinm2x dx

0π2sinmx dx=m1m.m3m20π2sinm4x dx

Case 1:

Whenmis even positive integer;

0π2sinmx dx=m1m.m3m2.m5m434.12.0π2(sinx)0dx

=m1m.m3m2.m5m434.120π2dx

=m1m.m3m2.m5m434.12.π2

0π2sinmx dx=m1m.m3m2.m5m434.12.π2

Case 2:

Whenmis odd positive integer;

0π2sinmx dx=m1m0π2sinm4xdx

0π2sinmx dx=m1m.m3m2.m5m445.23.0π2sinx dx

=m1m.m3m2.m5m445.23

0π2sinmx dx=m1m.m3m2.m5m445.23

Problem Solving

Prove that0π2sin2mθ dθ=(2m)!(2m.m!)2.π2

General Approach

Before going to start this problem we want to show you how (2m)! can be mathematically justified;

(2m)!=2m.(2m1).(2m2).(2m3).(2m4).(2m5).6.5.4.3.2.1

Segregating even and odd terms;

={2m.(2m2).(2m4).6.4.2}.{(2m1).(2m3).(2m5)5.3.1}

={2.m.2(m1).2.(m2).(2.3).(2.2).(2.1)}.{1.3.5(2m1)}

=2m.{m(m1).(m2).3.2.1}.{1.3.5.(2m1)}

=2m.m!.{1.3.5.(2m1)}

(2m)!=2m.m!.{1.3.5.(2m1)}

Since 2m is even, so

0π2sin2mθ dθ=(2m1).(2m3).(2m5).3.12m.(2m2).(2m4).4.2.π2

=(2m1).(2m3).(2m5).3.12m.(2m2).(2m4).4.2×2m.(2m2).(2m4).4.22m.(2m2).(2m4).4.2× π2

=2m.(2m1).(2m2).(2m3).(2m4).(2m5).4.3.2.1{2m.(2m2).(2m4).4.2}2×π2

=(2m)!{2m.m(m1).(m2).(m3)3.2.1}2×π2

=(2m)!{2m.m!}2.π2

Hence,0π2sin2mθ dθ=(2m)!(2m.m!)2.π2

Remarks:

1.

(2m)!{2m.m!}2.π2=π24m(2m)!m!.m!=(π/2)4m(2mm)

2.

(2m)!{2m.m!}2.π2=2m.m!.{1.3.5.(2m1)}22m.(m!)2.π2={1.3.5(2n1)}2m.m!.π2

0π2sin2mθ dθ=(2m)!(2m.m!)2.π2=(π/2)4m(2mm)={1.3.5(2n1)}2m.m!.π2

Using Complex Exponential

Here, we will encounter same problem within the interval 0 to π then we will draw a conclusion, what if we reduce the interval the interval of integration to 0 to π/2.

Here our concern problem is,

0πsin2mθ dθ,m=0,1,2,3, Since, sinθ=eiθeiθ2i

Therefore,sin2mθ=(eiθeiθ)2m(2i)2m =(eiθeiθ)2m22m.i2m =(eiθeiθ)2m(1)m 4m

From the Binomial theorem we have, 

(eiθeiθ)2m={( eiθ)+(eiθ)}2m

=k=02m(2mk) ekiθ ( eiθ)2mk

=k=02m(2mk) ekiθ( e iθ)2m( e iθ)k

=k=02m(2mk) ekiθ(1)2m e i2mθ(1) e ikθ

Since(1)2m=1,we have

(eiθeiθ)2m=k=02m(2mk) ei2kθei2mθ(1)k=k=02m(2mk) ei2(km)θ(1)k

and so

0πsin2mθ dθ=1(1)m4mk=02m(2mk)(1)k0πei2(km)θ dθ

Now concentrate for the moment on the integral at the right. If km, then,

0πei2(km)θ dθ=[ei2(km)θi2(km)]0π=0 because, at the lower limit of θ=0,ei2(km)θ=e0=1 and the upper limit of θ=π,ei2(km)θ =ei(km)2π =einteger multiple of 2πi=1, too. But if k=m we can’t use this integration because that gives a division by 0. So, set k=m before doing the integral. Thus, for k=m we have the integrand reducing to one and so our integral is just

0πdθ=π That is,

0πei2(km)θ dθ={0km πk=m

Thus, the result of the integration either 0 or,

0πsin2mθ dθ=1(1)m 4m(2mm)(1)mπ=π4m(2mm)

Because of the symmetry of sin2mθ over the interval 0 to π, it is clear that reducing the interval of integration to 0 to π/2 cuts the value of the integral in half, and so,

0π2sin2mθ dθ=(π/2)4m(2mm)

which is often called Walli’s integral, after the name English mathematician John Wallis. This is a curious naming, since Wallis did not evaluate this integral! His name is nonetheless attached to the integral because integrals of the form 0π/2sinmθ dθ can be used to derive Wallis’s famous product formula for π.

References

  1. Mathematical methods for physics and engineering, K.F. Riley, M.P. Hobson, S.J. Bence, Cambridge University Press, 2010, ISBN 978-0-521-86153-3

  2. Further Elementary Analysis, R.I. Porter, G. Bell & Sons Ltd, 1978, ISBN 0-7135-1594-5

  3. http://www.sosmath.com/tables/tables.html -> Indefinite integrals list

  4. http://www.sosmath.com/tables/tables.html -> Indefinite integrals list

  5. https://www.maths.tcd.ie/~pete/calculus/week8.pdf